Μαθηματική Μοντελοποίηση

Βιβλιογραφία

  • [1] J. R. Allman (2004) Mathematical models in biology: an introduction. Cambridge University Press, Cambridge. External Links: ISBN Cited by: 5.1.2, 5.1.2, 6.1.
  • [2] H. Aref, N. Rott and H. Thomann (1992) Gröbli’s solution of the three-vortex problem. Annu. Rev. Fluid Mech. 24, pp. 1. External Links: Document Cited by: 4.2.2, 4.2.6, 4.5.
  • [3] H. Aref (2007) Point vortex dynamics: a classical mathematics playground. J. Math. Phys. 48, pp. 065401. Cited by: 4.2.6, 4.3, 4.7.
  • [4] B. Barnes and G. R. Fulford (2011) Mathematical modelling with case studies: a differential equations approach using maple and matlab. Second edition, CRC Press, . External Links: ISBN 978-1-4200-8350-7 Cited by: 1.2.
  • [5] F. Brauer and C. Castill-Chavez (2012) Mathematical models in population biology and epidemiology. 2nd edition, Springer, New York. External Links: ISBN 978-1-4614-1686-9, Link Cited by: 5.1.1, 6.1.
  • [6] P. Chandra and E. W. Weisstein (2015) Fibonacci number. Note: From MathWorld–A Wolfram Web Resource External Links: Link Cited by: 5.1.3.
  • [7] L. Edelstein-Keshet (1988) Mathematical models in biology. McGrow-Hill, Boston. External Links: ISBN Cited by: 5.1.4, 6.1.
  • [8] G. R. Fowles and G. L. Cassiday (2004) Analytical mechanics. Cengage Learning, . External Links: ISBN 9780534494926 Cited by: 2.1.1, 2.2.4, 2.2.9, 2.3.
  • [9] C. Gardiner (2009) Stochastic methods: a handbook for the natural and social sciences. Springer, New York. External Links: ISBN Cited by: 7.1.
  • [10] H. Goldstein, C. P. Poole Jr and J. L. Safko (2001) Classical mechanics. 3rd edition, Pearson, . External Links: ISBN 978-0201657029 Cited by: 2.1.1, 2.2.1, 2.2.4, 2.2.9, 4.1.2, 4.1.5, 4.1.6.
  • [11] D. Griffiths (1996) Εισαγωγή στην Ηλεκτροδυναμική. Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο. External Links: ISBN Cited by: 4.1.1, 4.1.2.
  • [12] W. Gröbli (1877) Spezielle probleme über die bewegung geradliniger paralleler wirbelfäden. Zürcher und Furrer, Zürich. Cited by: 4.2.6, 4.2.6.
  • [13] J. K. Hale (1994) Dynamics and bifurcations. Springer, . External Links: ISBN Cited by: 3.1.1, 3.1.
  • [14] H. Helmholtz (1858) Über integrale der hydrodynamischen gleichungen, welche den wirbelbewegungen entsprechen. J. Reine Angew. Math. 55, pp. 33. Cited by: 4.2.2.
  • [15] M. W. Hirsh, S. Smale and R. L. Devaney (2004) Differential equations, dynamical systems & an introduction to chaos. Elsevier Academic Press, . External Links: ISBN 0-12-349703-5 Cited by: 3.1.1, 3.1.1, 3.1.2, 3.1.3, 3.1.4, 3.1.6, 3.1, 3.3, 3.1.
  • [16] P. G. Hoel, S. C. Port and C. J. Stone (2011) Εισαγωγή στη Θεωρία Πιθανοτήτων. Πανεπιστημιακές Εκδόσεις Κρήτης‚, Ηράκλειο. External Links: ISBN 978-960-524-156-8 Cited by: A.3.
  • [17] D. W. Jordan and P. Smith (1987) Nonlinear ordinary differential equations. Oxford University Press, Oxford. External Links: ISBN Cited by: 3.1.1, 3.1.1, 3.1.2, 3.1.4, 3.1, 3.2.1, 3.2.2, 3.3, 3.2.
  • [18] T. W. B. Kibble and F. H. Bershire (2004) Classical mechanics. Imperial College Press, London. External Links: ISBN 186094353 Cited by: 2.1.1, 2.2.4, 2.2.9.
  • [19] Kirchhoff (1876) Vorlesungen über mathematische physik. mechanik. Teubner, Leipzig. External Links: ISBN Cited by: 4.2.2.
  • [20] S. Komineas and N. Papanicolaou (2010) Gröbli solution for three magnetic vortices. Journal of Mathematical Physics 51 (4), pp. . External Links: Link, Document Cited by: 4.4, 4.6.
  • [21] D. P. Landau and K. Binder (2009) A guide to Monte Carlo simulations in statistical physics. Cambridge University Press, New York, Cambridge. External Links: ISBN 978-0521768481 Cited by: 7.1, 7.2, 7.3.
  • [22] L. D. Landau and E. M. Lifshitz (1985) The classical theory of fields. Fourth edition, Pergamon Press, . Cited by: 4.1.4, 4.1.
  • [23] J. Liu (2001) Monte carlo strategies in scientific computing. Springer, New York. External Links: ISBN Cited by: 7.1, 7.2, 7.1.
  • [24] J. D. Logan (2010) Εφαρμοσμένα Μαθηματικά. Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο. External Links: ISBN 978-960-524-155-1 Cited by: 1.2, 2.3.1, 2.3.2.
  • [25] J. D. Murray (2002) Mathematical biology I: an introduction. Springer, New York. External Links: ISBN , Link Cited by: 5.1.2, 5.1.4, 5.1.
  • [26] J. D. Murray (2002) Mathematical biology II: spatial models and biomedical applications. Springer, New York. External Links: ISBN , Link Cited by: 6.1.1, 6.1.
  • [27] P. K. Newton (2001) The N-vortex problem. Springer, . External Links: ISBN Cited by: 4.2.5.
  • [28] N. Papanicolaou and T. N. Tomaras (1991) Dynamics of magnetic vortices. Nucl. Phys. B 360, pp. 425. Cited by: 4.1.8.
  • [29] L. Perko (2001) Differential equations and dynamical systems. Third edition, Springer, New York. External Links: ISBN Cited by: 3.1.2, 3.1.3, 3.1.4, 3.1.6, 3.1, 3.3.
  • [30] C. Robert (2004) Monte carlo statistical methods. Springer, New York. External Links: ISBN Cited by: 7.1, 7.2, 7.1, 7.4.
  • [31] P. G. Saffman (1992) Vortex dynamics. Cambridge University Press, . External Links: ISBN Cited by: 4.2.1.
  • [32] R. W. Shonkwiler (2002) Mathematical biology i: an introduction with maple and matlab. Springer, . External Links: ISBN , Link Cited by: 5.1.2, 6.1.
  • [33] Stewart (1999) Life’s other secret: the new mathematics of the living world. wiley. John Wiley & Sons. Inc, . External Links: ISBN Cited by: 5.1.2, 6.1.
  • [34] G. Strang (2001) Γραμμική Άλγεβρα και Εφαρμογές‚. Πανεπιστημιακές Εκδόσεις Κρήτης‚, Ηράκλειο. External Links: ISBN 978-960-7309-70-9 Cited by: A.2.
  • [35] S. Strogatz (2000) Nonlinear dynamics and chaos. Westview Press, . External Links: ISBN Cited by: 3.1.2, 3.1.6, 3.1, 3.3, 5.3.2.
  • [36] S. T. Thornton and J. B. Marion () Classical dynamics of particles and systems. Cengage Learning India, . External Links: ISBN 8131518477 Cited by: 2.3.2.
  • [37] Wikipedia (2015) Lotka–volterra model. Note: An Essay on the Principle of Population External Links: Link Cited by: 6.1.1.
  • [38] Wikipedia (2015) Μοντέλο Malthus. Note: An Essay on the Principle of Population External Links: Link Cited by: 5.2.1.
  • [39] Ν.Δ. Αλικάκος Γ.Η. Καλογερόπουλος (2003) Συνήθεις Διαφορικές Εξισώσεις. Σύγχρονη Εποχή, Αθήνα. External Links: ISBN Cited by: A.2.5, 3.1.1, 3.1.
  • [40] (2015) Δημογραφικά μοντέλα. Note: Models of Human Population Growth External Links: Link Cited by: 5.2.1.